Battery Technology

The Battery Technology Department performs research and development on materials, cells and modules level. We work with various partners along the entire value chain to support the development and deployment of the new and emerging battery technologies in Europe.

For a brief overview, please check out this video presentation of IFE’s battery research:

The primary focus areas for the department are battery materials and analysis of lifetime and degradation of commercial batteries.

Battery materials – active materials and electrolytes are the priority topics for modern battery research. Specifically, for the last ten years IFE has been focusing on the development of anode materials for Li-ion and Na-ion batteries, including silicon-based and carbon-based materials. This development led to the discovery of amorphous substoichiometric silicon nitride – a promising material for future Li-ion batteries.

The Battery Technology Department is also involved in research on solid-state batteries – the next promising area where IFE’s research is focused on is interfaces of materials.

The analysis of commercial batteries is another focus area for the department. Batteries are very complex electrochemical systems with many reactions occurring in parallel during battery operation and even storage. Understanding of these processes is key for the prediction of a battery’s lifetime. In close collaboration with various industry partners, we analyze new commercial batteries to better understand usage patterns and ageing of the batteries.

Battery technology is an extremely exciting and rapidly growing area. The combination of multidisciplinary expertise, unique infrastructure and state-of-the-art facilities allows IFE to stay at the forefront of battery technology, while attracting industrial and academic partners throughout the battery value chain.

IFE is proud to be a supporting organization for Battery 2030+ initiative.

Highlighted National Projects

MoreIsLess – Knowledge-building project working towards the design of thick electrodes for Li-ion batteries with optimized balance of energy and power

SEAMLESS – Researcher project aiming to build a platform for materials’ discovery for the batteries of the future by creating a library of silicon-based nanomaterials for the next generation of Li-ion batteries (LIBs)

BATMAN – Norwegian Research Council funded project with Glencore, Elkem, Hydro, Fiven, Agder Energi, NTNU, University of Agder, Transport economical institute and Eyde Cluster, defining the demand for raw materials for the battery value chain, enabling reuse and recycling

SILICAP – Project funded by Regional Research Fund Vestlandet together with Beyonder to develop hybrid battery technology

SAGA – Innovation project for the industrial sector in collaboration with ELKEM and SINTEF aiming to modify the surface of artificial graphite for commercial applications in Li-Ion batteries

Silicon on the Road – How to make silicon-based anodes for Li-ion batteries

NorGiBatF – The Norwegian Giga Battery Factories (NorGiBatF) is a competence project to enable new battery industries to emerge in Norway

BattMarine – Knowledge-building project contributing to enable reliable, safe and economic use of batteries in marine applications, including all-electric and hybridized propulsion systems

SAIL – Silicon Alloys for Lithium-Ion Batteries: researcher project that aims to develop new advanced silicon alloys for high-capacity and long-lifetime batteries

Highlighted European Projects

CoFBAT – H2020 project strengthening the EU competitiveness in advanced materials and related battery value chain by developing a cobalt-free solutions and safe polymer electrolytes.

E-LAND – H2020 project about novel solutions for carbonized energy islands

Hydrogen4Mobility – H2020 MSCA RISE project, addressing critical issues towards a commercial implementation of hydrogen powered utility vehicles

Portable Energy Supply – NATO Emerging Security Challenges Division project, development of hydrogen fuelled portable energy systems

Publications

Highlighted publications 

Reviews 

Hasa, I.; Mariyappan, S.; Saurel, D.; Adelhelm, P.; Koposov, A. Y.; Masquelier, C.; Croguennec, L.; Casas-Cabanas, M.: Challenges of today for Na-based batteries of the future: From materials to cell metrics. Journal of Power Sources 2021, 482, 228872. https://doi.org/10.1016/j.jpowsour.2020.228872

Hirscher, M.; Yartys, V. A.; Baricco, M.; Bellosta von Colbe, J.; Blanchard, D.; Bowman, R. C.; Broom, D. P.; Buckley, C. E.; Chang, F.; Chen, P.; Cho, Y. W.; Crivello, J.-C.; Cuevas, F.; David, W. I. F.; de Jongh, P. E.; Denys, R. V.; Dornheim, M.; Felderhoff, M.; Filinchuk, Y.; Froudakis, G. E.; Grant, D. M.; Gray, E. M.; Hauback, B. C.; He, T.; Humphries, T. D.; Jensen, T. R.; Kim, S.; Kojima, Y.; Latroche, M.; Li, H.-W.; Lototskyy, M. V.; Makepeace, J. W.; Møller, K. T.; Naheed, L.; Ngene, P.; Noréus, D.; Nygård, M. M.; Orimo, S.-i.; Paskevicius, M.; Pasquini, L.; Ravnsbæk, D. B.; Veronica Sofianos, M.; Udovic, T. J.; Vegge, T.; Walker, G. S.; Webb, C. J.; Weidenthaler, C.; Zlotea, C.: Materials for hydrogen-based energy storage – past, recent progress and future outlook. Journal of Alloys and Compounds 2020, 827, 153548. https://doi.org/10.1016/j.jallcom.2019.153548

El Kharbachi, A.; Zavorotynska, O.; Latroche, M.; Cuevas, F.; Yartys, V.; Fichtner, M.: Exploits, advances and challenges benefiting beyond Li-ion battery technologies. Journal of Alloys and Compounds 2020, 817, 153261. https://doi.org/10.1016/j.jallcom.2019.153261

Anodes for Li-ion batteries 

Lai, S. Y.; Mæhlen, J. P.; Preston, T. J.; Skare, M. O.; Nagell, M. U.; Ulvestad, A.; Lemordant, D.; Koposov, A. Y.: Morphology engineering of silicon nanoparticles for better performance in Li-ion battery anodes. Nanoscale Advances 2020. https://doi.org/10.1039/d0na00770f

Ulvestad, A.; Reksten, A. H.; Andersen, H. F.; Carvalho, P. A.; Jensen, I. J. T.; Nagell, M. U.; Mæhlen, J. P.; Kirkengen, M.; Koposov, A. Y.: Crystallinity of silicon nanoparticles: direct influence on the electrochemical performance of Li‐ion battery anodes. ChemElectroChem 2020, accepted. https://doi.org/10.1002/celc.202001108

Prado, F. d.; Andersen, H. F.; Taeño, M.; Mæhlen, J. P.; Ramírez-Castellanos, J.; Maestre, D.; Karazhanov, S.; Cremades, A.: Comparative study of the implementation of tin and titanium oxide nanoparticles as electrodes materials in Li-ion batteries. Scientific Reports 2020, 10 (1), 5503. https://doi.org/10.1038/s41598-020-62505-x

Si-based anodes: advanced characterization 

Lai, S. Y.; Knudsen, K. D.; Sejersted, B. T.. Ulvestad, A.; Mæhlen, J. P.; Koposov, A. Y.: Silicon nanoparticle ensembles for lithium-ion batteries elucidated by small-angle neutron scattering. ACS Applied Energy Materials 2019, 2 (5), 3220-3227. https://doi.org/10.1021/acsaem.9b00071

Anodes for Li-ion batteries from industrial Si 

Foss, C. E. L.; Müssig, S.; Svensson, A. M.; Vie, P. J. S.; Ulvestad, A.; Mæhlen, J. P.; Koposov, A. Y.: Anodes for Li-ion batteries prepared from microcrystalline silicon and enabled by binder’s chemistry and pseudo-self-healing. Scientific Reports 2020, 10 (1), 13193. https://doi.org/10.1038/s41598-020-70001-5

Andersen, H. F.; Foss, C. E. L.; Voje, J.; Tronstad, R.; Mokkelbost, T.; Vullum, P. E.; Ulvestad, A.; Kirkengen, M.; Mæhlen, J. P.: Silicon-carbon composite anodes from industrial battery grade silicon. Scientific Reports 2019, 9 (1), 14814. https://doi.org/10.1038/s41598-019-51324-4

Silicon nitrides 

Ulvestad, A.; Mæhlen, J. P.; Kirkengen, M.: Silicon nitride as anode material for Li-ion batteries: Understanding the SiNx conversion reaction. Journal of Power Sources 2018, 399, 414-421. https://doi.org/10.1016/j.jpowsour.2018.07.109

Ulvestad, A.; Andersen, H. F.; Jensen, I. J. T.; Mongstad, T. T.; Maehlen, J. P.; Prytz, O.; Kirkengen, M.: Substoichiometric silicon nitride – An anode material for Li-ion batteries promising high stability and high capacity. Scientific Reports 2018, 8 (1), 8634. https://doi.org/10.1038/s41598-018-26769-8

Si-nanoparticles: synthesis 

Wyller, G. M.; Preston, T. J.; Anjitha, S. G.; Skare, M. O.; Marstein, E. S.: Combination of a millimeter scale reactor and gas chromatography-mass spectrometry for mapping higher order silane formation during monosilane pyrolysis. Journal of Crystal Growth 2020, 530, 125305. https://doi.org/10.1016/j.jcrysgro.2019.125305

Andersen, H. F.; Filtvedt, W.; Maehlen, J. P.; Mongstad, T. T.; Kirkengen, M.; Holt, A.: Production of silicon particles for high-capacity anode material yielding outstanding production capacity. ECS Transactions 2014, 62 (1), 97-105. https://doi.org/10.1149/06201.0097ecst

Solid-state electrolytes 

El Kharbachi, A.; Wind, J.; Ruud, A.; Hogset, A. B.; Nygard, M. M.; Zhang, J.; Sorby, M. H.; Kim, S.; Cuevas, F.; Orimo, S. I.; Fichtner, M.; Latroche, M.; Fjellvag, H.; Hauback, B. C.: Pseudo-ternary LiBH4·LiCl·P2S5 system as structurally disordered bulk electrolyte for all-solid-state lithium batteries. Physical Chemistry Chemical Physics 2020, 22, 13872-13879. https://doi.org/10.1039/d0cp01334j

Stability and characterization of Li-ion batteries 

Lian, T.; Vie, P. J. S.; Gilljam, M.; Forseth, S.: Changes in thermal stability of cyclic aged commercial lithium-ion cells. ECS Transactions 2019, 89 (1), 73-81. https://doi.org/10.1149/08901.0073ecst

Richter, F.; Kjelstrup, S.; Vie, P. J. S.; Burheim, O. S.: Thermal conductivity and internal temperature profiles of Li-ion secondary batteries. Journal of Power Sources 2017, 359, 592-600. https://doi.org/10.1016/j.jpowsour.2017.05.045

Modelling 

Vatani, M.; Szerepko, M.; Vie, P. J. S.: State of health prediction of Li-ion batteries using incremental capacity analysis and support vector regression. IEEE Milan PowerTech 2019, 1 – 6. https://doi.org/10.1109/PTC.2019.8810665

Na batteries 

Hasa, I.; Mariyappan, S.; Saurel, D.; Adelhelm, P.; Koposov, A. Y.; Masquelier, C.; Croguennec, L.; Casas-Cabanas, M.: Challenges of today for Na-based batteries of the future: From materials to cell metrics. Journal of Power Sources 2021, 482, 228872. https://doi.org/10.1016/j.jpowsour.2020.228872

Li-MH batteries 

El Kharbachi, A.; Zavorotynska, O.; Latroche, M.; Cuevas, F.; Yartys, V.; Fichtner, M.: Exploits, advances and challenges benefiting beyond Li-ion battery technologies. Journal of Alloys and Compounds 2020, 817, 153261. https://doi.org/10.1016/j.jallcom.2019.153261

Nazer, N. S.; Yartys, V. A.; Azib, T.; Latroche, M.; Cuevas, F.; Forseth, S.; Vie, P. J. S.; Denys, R. V.; Sørby, M. H.; Hauback, B. C.; Arnberg, L.; Henry, P. F.: In operando neutron diffraction study of a commercial graphite/(Ni, Mn, Co) oxide-based multi-component lithium ion battery. Journal of Power Sources 2016, 326, 93-103. https://doi.org/10.1016/j.jpowsour.2016.06.105

Ni-MH batteries 

Wijayanti, I. D.; Denys, R.; Suwarno; Volodin, A. A.; Lototskyy, M. V.; Guzik, M. N.; Nei, J.; Young, K.; Roven, H. J.; Yartys, V.: Hydrides of Laves type Ti–Zr alloys with enhanced H storage capacity as advanced metal hydride battery anodes. Journal of Alloys and Compounds 2020, 828, 154354. https://doi.org/10.1016/j.jallcom.2020.154354

Yartys, V.; Noreus, D.; Latroche, M.: Metal hydrides as negative electrode materials for Ni–MH batteries. Applied Physics A 2016, 122 (1), 43. https://doi.org/10.1007/s00339-015-9538-9

Hydrogen storage 

Yartys, V. A.; Lototskyy, M. V.; Akiba, E.; Albert, R.; Antonov, V. E.; Ares, J. R.; Baricco, M.; Bourgeois, N.; Buckley, C. E.; Bellosta von Colbe, J. M.; Crivello, J. C.; Cuevas, F.; Denys, R. V.; Dornheim, M.; Felderhoff, M.; Grant, D. M.; Hauback, B. C.; Humphries, T. D.; Jacob, I.; Jensen, T. R.; de Jongh, P. E.; Joubert, J. M.; Kuzovnikov, M. A.; Latroche, M.; Paskevicius, M.; Pasquini, L.; Popilevsky, L.; Skripnyuk, V. M.; Rabkin, E.; Sofianos, M. V.; Stuart, A.; Walker, G.; Wang, H.; Webb, C. J.; Zhu, M.: Magnesium based materials for hydrogen based energy storage: Past, present and future. International Journal of Hydrogen Energy 2019, 44 (15), 7809-7859. https://doi.org/10.1016/j.ijhydene.2018.12.212

Our people

Hanne Flåten Andersen, Department Head

Muhammad Abdelhamid, Scientist

Carl Erik Lie Foss, Scientist

Anjitha Sarachandra Kumar Geetha, PhD student

Alexey Koposov, Scientist

Marta Koposova, Engineer

Raphael Kuhn, Engineer

Sigmund Sørensen Kielland, Business developer

Samson Yuxiu Lai, Group Leader Battery Materials

Jan Petter Mæhlen, Group Leader Battery Technology

Marius Uv Nagell, Engineer

Theresa Nguyen, Engineer

Tommy Vikan Nordby, Engineer

Zbigniew Rozynek, Scientist

Marte Orderud Skare, PhD student

John Ostrander, Scientist

Asbjørn Ulvestad, Scientist

Preben Joakim Svela Vie, Scientist

Julia Wind, Scientist

David Wragg, Scientist

Volodymyr Yartis, Scientist

Monica Christina Økland, Department Coordinator

Services

Battery Testing – testing of batteries, from small-scale coin cells to larger commercial cells and battery modules

Battery Materials Testing – large range of services related to the testing and evaluation of battery materials