

Economic drivers for robotic and remote systems in decommissioning

Eduard NIKITIN JSC TVEL (ROSATOM) Russian Federation

Norbert MOLITOR PLEJADES GmbH, Germany

- 1 Goals of Cost Benefits Analysis Ad-Hoc Group and current status
- 2 Economic drivers
- 3 Practical case development Dessel Experience of FBFC
- 4 Further steps

MAIN GOALS OF COST BENEFITS AD-HOC GROUP

BETTER POLICIES FOR BETTER LIVES

Economic Drivers

What may directly or indirectly influence economic benefits

4

Trends

Creativity is the key to success in the great and primary education

Practical Case

How drivers can be assessed on a real case

5

R&D Prospective

What R&D directions are the most prospective

Global View

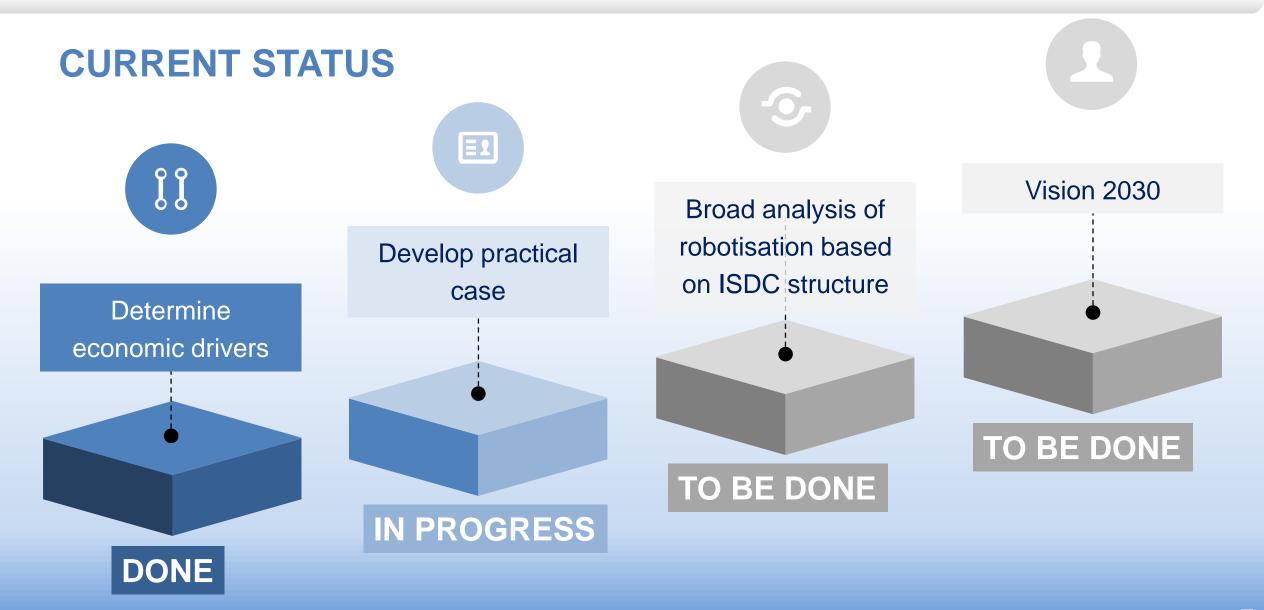
3

Current status of benefits in backend by ISDC

6

Recommendations

What can be done to support development and implementation of robotics


Δ

HYBRID APPROACH – IS THE BEST WAY TO SATISFY DIFFERENT NEEDS

	GENERAL OVERVIEW	CASE DEVELOPMENT	HYBRIDE APPROACH
GLOBAL VISION		×	\checkmark
TRENDS		×	
PRACTICAL APPROACHES	×	\checkmark	
REFERENCES	×	\checkmark	
CROSS-CUTTING UNDERSTANDING	×	×	

- 1 Goals of Cost Benefits Analysis Ad-Hoc Group and current status
- 2 Economic drivers
- 3 Practical case development Dessel Experience of FBFC
- 4 Further steps

DRIVERS OF COST BENEFITS REGULATORY **OPERATION PROCESS APPROACH** RISK SOCIAL **OPEX** ACCEPTABILITY **STAFF KNOWLEDGE** CAPEX MANAGEMENT **TIME OF EXECUTION**

Assessment of economic impact of robotics implementation should take into account these drivers in case consider direct and indirect benefits

•

Describe drivers

	RIS	SKS		
Expenses				
Significant increase	Low increase	Low decrease	Significant decrease	

increase

Significant decrease

TIME OF EXECUTION

SOCIAL ACCEPTABILITY Local society to usage robotics and digital AI solutions in D&D

LICENSING & REGULATION

KNOWLEDGE MANAGEMENT

Way of knowledge accumulation

No influence Knowledge Semi AI Development Significant accumulation solutions of AI solutions development of - database AI solutions

- 1 Goals of Cost Benefits Analysis Ad-Hoc Group and current status
- 2 Economic drivers
- 3 Practical case development Dessel Experience of FBFC
- 4 Further steps

BELGIAN CASE – FBFC DESSEL (1): ENHANCED RW MANAGMENT

OBJECTIVES

TECHNICAL - SAFETY

Minimimise radioactive waste (in volume) by safe (reliable) sorting

FINANCIAL - COSTS

Minimise radioactive waste management costs

SCHEDULE - TIME

Achieve effectively diversion of materials for timely clearing of site

$\ensuremath{\mathbb{C}}$ 2020 Organisation for Economic Co-operation and Development

STARTING SITUATION

Site in advanced decommission state with large amount of site remediation wastes: soil with vegetaion compounds (e.g. roots) and some former building debris

TASK Safe, effective and efficient radioactive waste management

BELGIAN CASE – FBFC DESSEL (2)

SORTING CRITERIA:

CLEAN

< 1Bq/g: unconditional free release.

Maximise unconditional release of materials (unrestricted use). In first instance, this sand was and will be used to refill the excavation on site

GREY ZONE

1-10Bq/g: conditional release. Restricted management – disposal in landfill

STRATEGY

With a dedicated license granted by the Belgian authority, this material was transferred in big bags to a conventional landfill for hazardous waste

RADIOACTIVE WASTE

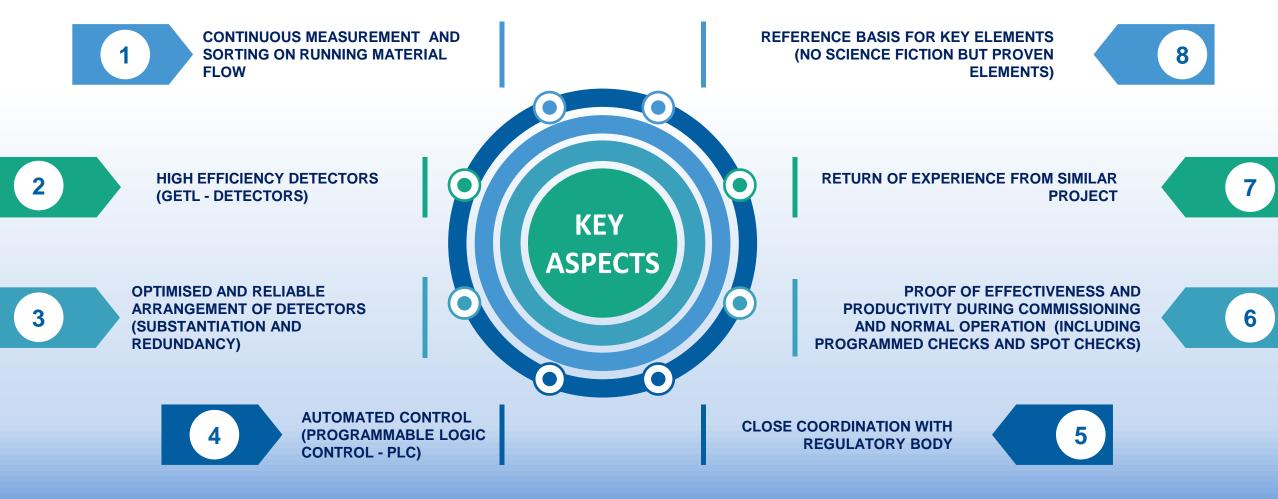
≥10Bq/g:

Radioactive waste will be diverted according the applicable normative and administrative context

transferred to the Belgian national radioactive waste management agency (ONDRAF/NIRAS)

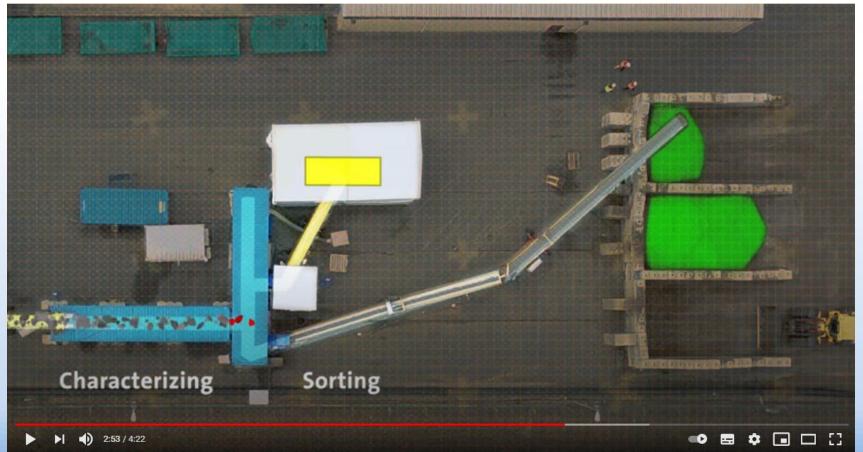
BELGIAN CASE – FBFC DESSEL (3)

TECHNOLOGY AND ECONOMY ASPECTS:



BELGIAN CASE – FBFC DESSEL (4)

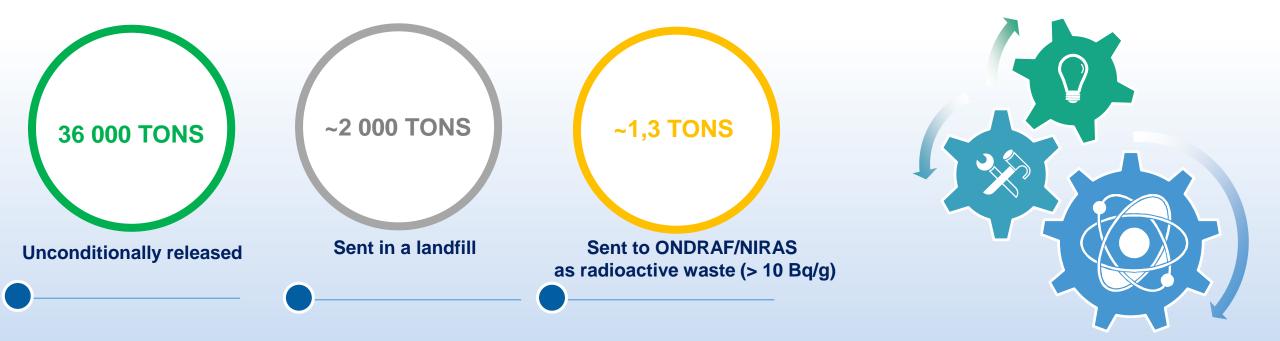
CHOSEN TECHNOLOGY AND APPROACH:



BELGIAN CASE – FBFC DESSEL (5) VIDEO

https://www.youtube.com/watch?v=klj6yOl1XZs

OVERVIEW OF DESSEL CHARACTERIZATI ON CASE:



BELGIAN CASE – FBFC DESSEL (6)

About 38 000 tons of soil have been excavated and sent through the sorting equipment FREMES within 12 months of operation (01-12/2018) with following results:

THE RESULTS MAKES EVIDENT THE MERRIT TO USE AN ENHANCED AUTOMATED TECHNOLOGY

- 1 Goals of Cost Benefits Analysis Ad-Hoc Group and current status
- 2 Economic drivers
- 3 Practical case development Dessel Experience of FBFC
- 4 Further steps

Timeframe and scale classification of effects

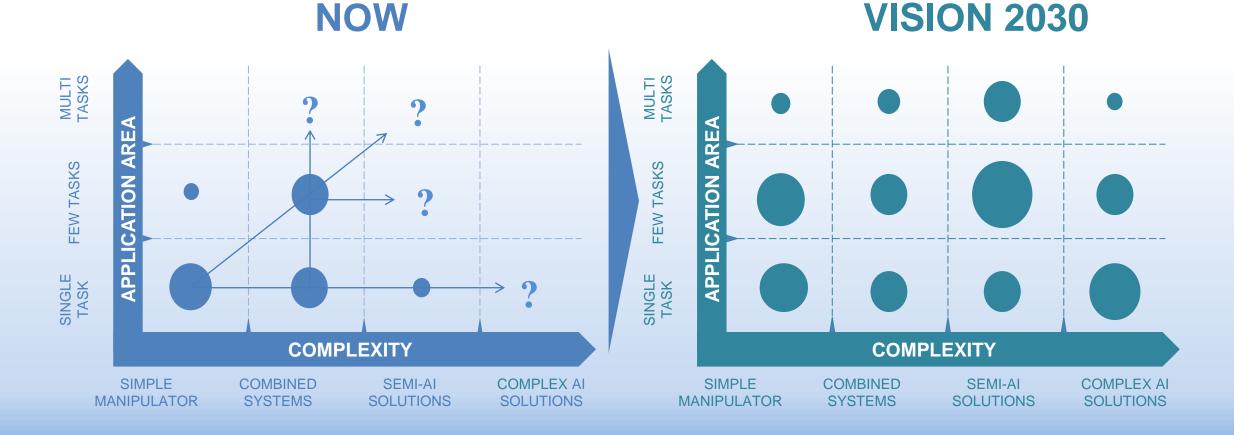
There are 4 timeframes:

- 1 Immediate cost benefits may be achieved at one step of project
- 2 Short-term cost benefits may be achieved on one stage of project
- 3 Midterm cost benefits may be achieved on all stages of project

4 Long-term – cost benefits may be achieved at a few projects

There are 5 scales:

- 1 Step cost benefits may be achieved at one step of project
- 2 Stage cost benefits may be achieved on one stage of project
- 3 Project cost benefits may be achieved in a project
- 4 Group of projects cost benefits may be achieved in a few projects
- 5 Global cost benefits may be achieved in case of global implementation


18

	Classification Robotics by current usage CAN BE EXECUTED BY PEOPLE				
ROBOTICS ARE IMPLEMENTED	 Comparison with robotics/without robotics (Pros&Cons) How stable is robotics position? What to do to make it stronger? 	 General description solutions How are can be solutions improved? 			
ROBOTICS ARE NOT IMPLEMENTED	 Comparison with robotics/without robotics (Pros&Cons) What have to be done to implement robotics? What solutions have more prospective and in what timeframe? 	 General description solutions What have to be done to implement robotics? What solutions have more prospective and in what timeframe? 			
		IV			

FORECAST OF ROBOTICS, REMOTE AND DIGITAL DEVELOPMENT TRENDS FROM ECONOMIC

20

THANK YOU