sck cen

Computational personal dosimetry using flexible phantoms and staff tracking in decommissioning

Filip Vanhavere, P. Lombardo, M. Abdelrahman, O. van Hoey

Institute for Energy Technology

DigiDecom 2021 – DIGITAL

Online international workshop focusing on digital transformation, robotics and other game changing trends in nuclear decommissioning

PODIUM project (2018-2020)

- CONCERT funded project of two years (2018-2020)
- Objective: to improve occupational dosimetry by the development of an online dosimetry application based on computer simulations
- 7 European partners, coordinated by SCK.CEN
- Two main applications: interventional radiology & neutron fields

DigiDecom 2021²

Limitation of dosimetry: practical aspects

- Physical dosemeters are **not ideal** to wear and to handle
 - Incorrect positioning can affect dose assessments
 - Dosemeters require storage and handling
 - The use of multiple dosimeters is not practical and can hinder work
- Dosimetry requires manual workload from the staff and extra costs related to read-out

4....

Limitations of dosimetry: safety aspects

- Limited accuracy: dosemeters are subject to high uncertainties (up to 50%), especially in highly inhomogeneous fields.
- In the last 50 years occupational dosimetry has been evolving very slowly, and its methods are falling behind the times.
- The quantities that can be assessed by physical dosemeters are only the operational dose equivalents, and not individualized tissue/effective doses

«.....

5......................

6

6....

...

~···

{....

What's our objective?

A computational system for real-time dose assessments

- Innovative: marker-less system for person tracking and real-time dose estimations, providing both dose equivalents and organ and effective doses.
- Accurate: computational framework based on Monte Carlo simulations, advanced phantoms and accurate source modeling. We aim for organ dose uncertainties lower than 20%.
- Practical and cost-effective: practical thanks to no need of dosimeter; cost effective thanks to cheap hardware, lack of calibration and of readout processes. Our system can be framed as a subscription based service

Architecture of the Computational Dosimetry System

Staff Motion Tracking

Tracking system based on depth cameras

RAF phantoms family (2018-2021)

- Polygonal Mesh B-Rep phantom designed with 3Ds Max
- Tissue masses (without blood) were fit to ICRP 89, with differences within ±10%.

We performed a **dosimetric validation** for idealized external irradiation by comparing with ICRP 116. For most of the organs and energies, **differences were within ± 30%.**

sck cen

RAF phantoms postural flexibility

Interactive Posture Program (IPP)

Interventional Radiology

Interventional Radiology

Interventional Radiology

Decommissioning

Online Dosimetry System for D&D (2022 ->)

We will develop a specialized version of the Online Dosimetry System to answer dosimetry requirements for D&D

New challenges:

- larger area to be monitored in the tracking the workers, including tracking of scattering/shielding objects -> use of newest Computer Vision algorithms based on Neural Network for person and object recognition
- Implement radioactive sources and PPE in the Monte Carlo models -> for the source, we will rely on radiological inventories, while PPE geometry will be modeled and added to the RAF phantom in Polygonal Mesh format
- Develop a virtual/augmented reality interface to efficiently and effectively inform/guide the D&D process -> use of 3D engines (Unity) and AR glasses (Hololens)

Online Dosimetry System for D&D (2022 ->): applications

Real time dosimetry monitoring

- Real time MC simulations
- Dosimetry data visualization through Augmented Reality including warnings for high dose rates

ALARA planning and training tool

ALARA planning and training tool

- Accurate MC simulations using flexible phantoms
 Planning and analysis dosimetry tool visualizing data in
 Virtual Reality environment
 Neural Network based framework for optimizing dose
 - calculations and support D&D process workflow

Real time dosimetry monitoring

- Real time Hybrid MC-Neural Network based simulations
- Dosimetry data visualization through Augmented Reality including warnings for high dose rates

We are looking for collaborations!

sck cen

DigiDecom 2021 – DIGITAL

Online international workshop focusing on digital transformation, robotics and other game changing trends in nuclear decommissioning

filip.vanhavere@sckcen.be