Innovation tools to improve physical and radiological characterization of nuclear zones

Camille Theroine
12/05/18 10am

Technical and Innovation Department
Unrestricted
Introduction

Characterization of installations

OPTIMIZE

Occupational/nuclear safety of operations

Intervention scenarios

Waste strategies
Innovation at work in our business

MANUELA™
3D radiological mapping

NanoPix
Miniature gamma camera

MARA
Mesh with Augmented Reality Assistance

RIANA™
Multi-purpose carrier for investigations

RIANA SC
Radiological mapping of underside of containers
Innovation at work in our business

MANUELA™
3D radiological mapping

NanoPix
Miniature gamma camera

MARA
Mesh with Augmented Reality Assistance

RIANA™
Multi-purpose carrier for investigations

RIANA SC
Radiological mapping of underside of containers
MANUELA™: Mobile Apparatus for Nuclear Expertise and Localisation Assistance

3D radiological mapping \((Real\ Time)\)

- Simultaneous 3D radiological and topographical mapping of facilities
- Precise positioning of radiological measurements

Location of hot spots \((at\ the\ end\ of\ the\ scan)\)

- Visualization of the intensity distribution of \(\gamma\) radiation
- Identification of irradiation sources location and characteristics
MANUELA™: Mobile Apparatus for Nuclear Expertise and Localisation Assistance

Evaluation of the accumulated operators dose performing interventions *(at the office)*

- Integration of virtual operators into the reconstructed mapping in order to assess the accumulated dose of personnel performing interventions within the framework of ALARA approaches
- Simulation of operating scenarios and optimization of workstations

Transmission of information to teams prior to performing intervention *(during pre-job briefing)*

- Present the worksite environment to the operators, repeat the gestures, and understand the risks
- Export of data to a virtual reality interface for immersion of operators into the workspace
- **Quality**
 Reliability and traceability of radiological measurements and their spatial positioning

- **Performance**
 Increase in the quantity of information transmitted to teams performing interventions

- **Safety**
 Carrying out of risk and dose rate optimization studies

- **Universality**
 Can be adapted to all nuclear environments

- **Expertise**
 Analysis of data with specific post-processing
Innovation at work in our business

- **MANUELA™**
 - 3D radiological mapping

- **NanoPix**
 - Miniature gamma camera

- **MARA**
 - Mesh with Augmented Reality Assistance

- **RIANA™**
 - Multi-purpose carrier for investigations

- **RIANA SC**
 - Radiological mapping of underside of containers

WNE 2016

WNE 2018
NanoPix

Nuclear investigations by γ imaging with an ultra-compact γ camera in support

System allowing a real photo and a dose rate curve formally expressed by a colored patch to be superimposed over each other

Rapid location of γ sources that are not accessible and/or are in highly radiological environments

Possibility of being embedded onto different carriers (pole, robot, robot arm, drone, etc.)
NanoPix

Ultra-portable γ imaging system: < 300g

Identification of irradiating points:
- In highly restrictive zones
- On equipment

Dimensions: H 7cm / W 3cm / D 5cm

Background reduction: anti-mask (automatic rotation)

Improved measurement sensitivity: implementation of coded mask technology
NanoPix

• **Adaptability**
 Access to highly restrictive zones (high levels of radiation, vessels, etc.)

• **Performance**
 Project risks management thanks to consolidation of input data and scenarios prior to performing interventions

• **Safety / ALARA**
 Reduction of risks for the operator by means of remote investigation

• **Cost**
 Saving on operational times when performing the intervention and control over waste inventory

• **Expertise**
 Identification of specific irradiating points in inaccessible zones
Innovation at work in our business

MANUELA™
3D radiological mapping

NanoPix
Miniature gamma camera

MARA
Mesh with Augmented Reality Assistance

RIANA™
Multi-purpose carrier for investigations

RIANA SC
Radiological mapping of underside of containers
MARA: Mesh with Augmented Reality Assistance

Mesh for mapping large areas

- Replacement for conventional intrusive mesh solutions
- Rapid and automatic construction of a mesh prior to radiological investigations
- Information entered directly on tablet or smartphone
- Production of intervention report directly on exiting worksite
MARA: Mesh with Augmented Reality Assistance

Visualization of information collected

Visualization of the mesh created on the connected tablet and/or smartphone (augmented reality)

Automatic synchronization of information by Wi-Fi communication between the tablet and the smartphone

Traceability of information

Information is automatically saved to the tablet

In-situ memorization of measurements on NFC tag which can be written and read using the smartphone
Quality
MARA facilitates the meshing phase for radiological investigations and ensures a total data traceability.
Reduction of HOF risk due to your measurement values being entered on-line

Adaptability
Intuitive interface means operators are able to get to grips with the tool immediately

Safety
Less troublesome meshing phase and optimization of time spent in irradiated zone

Easier to install
Can be installed on the worksite in less than 2 minutes
Ready to use: no need to pre-load any site files

Traceability
Automatic backup of information on the tablet
Writing and reading of information on NFC tags
Innovation at work in our business

MANUELA™
3D radiological mapping

NanoPix
Miniature gamma camera

MARA
Mesh with Augmented Reality Assistance

RIANA™
Multi-purpose carrier for investigations

RIANA SC
Radiological mapping of underside of containers
RIANA™: Robot for Investigations and Assessments for Nuclear Areas

Ground level radiological mapping module with automatic positioning and manual adjustment of probes

- Measurement of dose rate, surface contamination and γ spectrometry
- Rapidly interchangeable probes

Remotely controlled arm with 3 degrees of freedom which can be used to take solid samples and perform radiological mapping of walls and equipment

- Interchangeable grippers for moving object and measuring probes
- Camera and lighting positioned at the end of the arm
RIANA™: Robot for Investigations and Assessments for Nuclear Areas

Module for taking liquid and powdery samples

- Collection of 3 liquid or powdery samples (50 cm³ max.) and in situ dose rate measurement
- Visualization of the fill level of vessels and monitoring of the aspiration phase

Mapping module

- Real-time 2D map construction and accurate positioning of measurements
- Possibility of defining a safety perimeter making it possible to slow down then stop when approaching an obstacle.
• **Simplicity**
 - Easy and intuitive to control, both indoors and outdoors, thanks to the control joystick

• **Modularity**
 - Interchangeable measurement modules
 - Quick to take samples

• **Accuracy**
 - Positioning in its environment and construction of an accurate 2D map of measurements and samples taken

• **Traceability**
 - Automatic recording of measurements which can be exported for use in post-processing

• **Safety / Radiation protection**
 - Measurements taken remotely
Innovation at work in our business

MANUELA™
3D radiological mapping

NanoPix
Miniature gamma camera

MARA
Mesh with Augmented Reality Assistance

RIANA™
Multi-purpose carrier for investigations

RIANA SC
Radiological mapping of underside of containers
Radiological mapping of radioactive material containers before shipment

- System enabling the radiological mapping of the underside of containers and visual inspection
- Wireless robot-assisted mapping with autonomous navigation
- Dose rate measurement at point of contact
Supervision and traceability of data

- Control of the robot from a remote control station
- Real-time 2D mapping to identify areas of interest to be investigated by contact
- Real-time display of dose rate measurements
- Automatic recording of data for each investigation performed
RIANA SC

- **Quality**
 Elimination of non-quality related to inspection errors prior to shipment

- **Simplicity**
 Simple, intuitive solution deployable in minutes

- **Nuclear Safety / Radiation Protection**
 Robot remotely controlled to reduce the radiological impact on the operator

- **Adaptability**
 Wireless standalone solution with capability to include additional radiological measurements

- **Occupational Safety**
 Elimination of risks for the operator during the operation
SUMMARY

Innovative tools to improve physical and radiological characterization of nuclear zones

D&D operations (D&D) of nuclear facilities aim at being economically viable, adapted to the sites and customer needs.

The key point of D&D projects, is to know how to optimize each phases of D&D’s process:
- from the initial status when input data are collected to determine necessary resources, cost and duration of all operations
- to the characterization of the final waste before deconstruction or decommissioning of the facility.

Different innovative technological bricks have been deployed by Orano to address these issues:

- **RIANA™** and **RIANA SC**: wireless mobile carriers with autonomous navigation for investigations.
- **Nanopix**: an ultra-compact γ camera which replaces operators and robots intervention in unknown radiological environments.
- **MANUELA™**: a Real-Time 3D Topographical and Radiological mapping tool.
- **MARA**: mesh with augmented reality assistance for radiological investigations, ensuring the traceability of measurements.

Thanks to these versatile tools, **Orano proposes turnkey services** to bring under control D&D’s operations of nuclear facilities.
Key data - MANUELA™

Autonomy: 4 hours of scanning
Weight: approx. 1.5 kg

Measurement probes: dose rate and γ spectrometry (CdZnTe)

Data processing

Retro-projection of radiological γ distribution on a 3D model

Visualization in real time of the 3D reconstruction / radiological measurements

Data export

Interface with different modeling tools for the estimation of activities

Interface with VR tools: pre-job briefing, training, etc. and AR tools: visualization of radiological information by the operator while performing the intervention
Key data - MARA

MARA pack includes: 1 tablet, 1 smartphone, 1 laser rangefinder, 1 tripod, NFC tags, 1 armband

Mesh configuration: precise mesh positioning, choice of colors, cell identification

Mesh visualization: AR

Information you can saved: Local ID, Wall ID, Cell ID, Non-fixed α contamination, Fixed α contamination, Non-fixed β/γ contamination, Fixed β/γ contamination, Dose rate, Maximum dose rate, Comments.

Data can be saved: On the tablet where a dedicated folder is created, Via in-situ memorization of measurements on NFC tags

Generation of configurable intervention report: Addition of notes and sketches

MARA smartphone extension: offers the same functionalities as the app on the tablet. The video available on the tablet is also visible on the smartphone via Wi-Fi connection. It can run the telemeter remotely for creating a mesh.
Key data - RIANA™

- **Dimensions**: L 775 mm x W 540 mm x H 560 mm
- **Weight**: 65 kg
- **Clearance**: 120 mm
- **Load Capacity**: 65 kg
- **Maximum speed**: 3 m/s
- **Wireless Communication**: Wifi
- **Ingress Protection rating**: IP54 Autonomy > 2h
Key data - RIANA SC

- Wireless mobile base with omni-directional wheels
- Autonomous navigation below the container
- Probe elevation system for contact measurements
- Real-time transmission of radiological data and creation of 2D mapping
- Extended measurement range (via 2 measurement probes) from a few tens of nSv/h to a few Sv/h
- Recording of mapping for traceability
RIANA SC a été conçu pour répondre à la problématique transport, i.e. le contrôle des 6 faces d'un conteneur et notamment la face du dessous qui est associé à un gros risque humain.

Les 4 points forts du robot sont:
- On remplace complètement l'humain. Ce n'est pas un système de pont ou autre qui diminue le risque en le laissant subsister, là il disparaît complètement.
- Le robot fait un maillage automatisé, moins de risque de manquer quelque chose.
- Le robot ne sort jamais de la zone définie par les 4 câles, ce qui permet la co-activité sans risque et surtout un gain de temps puisque les opérateurs font autre chose. (Environ 15mins sur 1h30).
- Il y a désormais une traçabilité du contrôle. la carto peut-être transmise au client avant expédition par exemple.