

Digital Technologies Supporting Lifecycle Nuclear Knowledge Management of NPPs

International Workshop on Application of Advanced Plant Information Systems for Nuclear Decommissioning and Life-cycle Management

03-05 December, 2018 Lillehammer, Norway

> Ashok Ganesan Nuclear Knowledge Management Section, Department of Nuclear Energy, IAEA

Objectives

- Rationale of lifecycle approach
- Digital technologies
- IAEA assistance to Member States
- Considerations and insights

Courtesy : Hitachi, Japan

Digital technologies for lifecycle management of nuclear knowledge in NPPs

Plant Information Model (PIM)

A Knowledge-centric Plant Information Model is a semantically organized set of interlinked facility information, relationships, rules and knowledge frameworks that collectively form digital representations of the plant throughout its life cycle

Plant Information Model (PIM) for the Plant Lifecycle

Design	Construction	Commissioning	Operations and Maintenance	Long term Operation	Decommissioning
 Design specifications Design requirements Design changes 	 As built drawings and specifications Design changes to Structures, Systems and Components Construction experience 	 Testing and validation Design changes based on commissioning feedback Commissioning experience 	 Design changes from operation feedback Operation experience Operation and Maintenance policies/proced ures 	- Major design changes to plant Structures, Systems and Components to improve performance and safety	- Data and experiences

Plant Information Model Captures the Information as the Plant Moves Through Lifecycles (~ 100 Years)

Plant information model for decision making

Plant information model

Project life cycle data

Plant Information Model (PIM) for the Plant Lifecycle-Example of an equipment- Reactor Coolant Pump

Case Study of Plant Information Model (PIM)

Knowledge Management Assist Visit (KMAV)

- 1. Policy and Strategy for KM
- 2. Human Resource (HR) Processes for KM
- 3. Training and Competence Development for KM
- 4. Methods, Procedures & Documentation Processes for Improving KM
- 5. Technical Solutions for KM
- 6. Approaches to the Capture, Retention and Transfer of Knowledge
- 7. Organizational Culture to Support KM
- 8. Internal/External Collaboration for KM

IAEA assistance to Member States

IAEA Publications

IAEA Publications

Work in Progress

- Semantic Technologies and their Application to Nuclear Knowledge Management
- Approaches & Guidelines of Taxonomy Development & Management in the Nuclear Sector
- Application of Plant Information Models to Support and Manage Design -Knowledge throughout the NPP Life Cycle
- Managing Nuclear Design Knowledge over the Life Cycle-Stakeholder perspectives, challenges and approaches;
- Approaches to Lifecycle Management of Technical and Design Requirements Specifications for Nuclear Facilities
- Current Practices in the Management of design, manufacturing, construction and commissioning information and knowledge during New Build Projects;

- Lifecycle perspective for Knowledge Management is an important requirement for safe, economical and reliable performance of NPPs
- Safety and business objectives should be drivers for this initiative
- IT enabled digital technologies like Plant Information Models (PIM) play a key role in this process

Technical meeting : Technical Meeting to Share Experience on Knowledge Management Assist Visits (KMAVs) for Nuclear Organizations, 19-22 Mar 2019, Vienna

Technical meeting : IT Digital Applications to Support Nuclear Knowledge Management Programmes, 25- 28 June 2019, Beijing, China

Mr Ashok Ganesan, Nuclear Knowledge Management Section International Atomic Energy Agency Vienna Austria Email: A.Ganesan@iaea.org

